Question	Expected Answers	Marks	Additional Guidance
Question 1 (a)	Expected Answers Structural isomer compounds with the same molecular formula \checkmark but with different structural formulae \checkmark Stereoisomer compounds with the same structural formula \checkmark but with different arrangements in space \checkmark Evidence of using Mr of 70 to calculate molecular formula of $C_5H_{10} \checkmark$ F and G are \bigcirc \bigcirc	Marks 11	 ALLOW same molecular formula ✓ but different structures ✓ Second marking point is DEPENDENT on first mark ALLOW compounds with the same structure Second marking point is DEPENDENT on first mark This is the QWC mark IGNORE wrong names of F, G and H ALLOW structural or displayed formulae for F, G and H e.g. H is CH₃CH₂CH₂CHCH₂ ALLOW identification using <i>trans</i> and <i>cis</i> and ALLOW this marking point as identification of another
	Correct identification of the <i>E</i> and <i>Z</i> isomers \checkmark H is		 example of identifying <i>E/Z</i> or <i>cis</i> and <i>trans</i> if not done for F and G ALLOW one mark if no structures drawn but correct names given for F, G and H i.e <i>E</i>-pent-2-ene, <i>Z</i>-pent-2-ene and pent-1-ene ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks
	<i>E</i> /Z happens because double bonds restricts rotation ✓		
	different groups on each carbon of the double bond \checkmark		

Question	Expected Answers	Marks	Additional Guidance
Question (b)	from IR absorption, J contains O–H OR from IR J is an alcohol \checkmark C : H : O = $\frac{70.59}{12.0}$: $\frac{13.72}{1.0}$: $\frac{15.69}{16.0}$ OR 5.8825 : 13.72 : 0.9806 \checkmark empirical formula = C ₆ H ₁₄ O \checkmark (from mass spectrum), $M_r = 102 \checkmark$ evidence that it has been shown that the empirical formula is the molecular formulae e.g. M_r of C ₆ H ₁₄ O = 102 so empirical	Marks 8	Additional Guidance This is a QWC mark ALLOW two marks for correct empirical formula with no working out This is a QWC mark
	formula is molecular formula ✓ OH OH		 ALLOW structural or displayed formulae IGNORE incorrect names ALLOW one minor slip in drawing structures e.g. one missing hydrogen but ALLOW ecf for bigger slips such as showing just sticks and no hydrogen atoms ALLOW bond to H in OH
	OH One mark for each correct structure $\checkmark \checkmark \checkmark$		 ALLOW one mark for three isomers of C₆H₁₃OH whether branched or unbranched as a catch mark if no other mark has been awarded for the structures If more than three isomers of C₆H₁₃OH drawn 1 branched and 3 unbranched award two marks any other combination award one mark ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan-3-ol if structures not drawn
	Total	19	

C	uesti	ion	er	Marks	Guidance
2	(a)		(a compound) with no double bond (or triple bond) ✓ containing hydrogen and carbon only ✓	2	ALLOW contains single bonds only ALLOW it contains just carbon and hydrogen DO NOT ALLOW a mixture of carbon and hydrogen OR only carbon and hydrogen molecules
	(b)		CH₂ ✓	1	ALLOW H ₂ C
	(c)		D and I OR F and G OR F and H ✓	1	DO NOT ALLOW G and H
	(d)	(i)	Cyclic hydrocarbons have more efficient combustion ✓	1	The answer must relate to combustion or burning Assume 'they' refers to the cyclic hydrocarbons ALLOW cyclic hydrocarbons allow smoother burning OR cyclic hydrocarbons increase octane number OR cyclic hydrocarbons reduce knocking OR cyclic hydrocarbons are less likely to produce pre-ignition OR cyclic hydrocarbons are more efficient fuels OR cyclic hydrocarbons burn better OR easier to burn OR cyclic hydrocarbon combust more easily OR improves combustion DO NOT ALLOW cyclic hydrocarbons ignite more easily ALLOW ora for straight chain hydrocarbons IGNORE cyclic hydrocarbons increase volatility of fuel IGNORE cyclic hydrocarbons have a lower boiling point cyclic hydrocarbons are a better fuel on their own is NOT sufficient cyclic hydrocarbons burn more cleanly on their own is NOT sufficient

Q	uesti	on	Answer	Marks	Guidance
	(d)	(ii)	$C_7H_{16} \rightarrow C_7H_{14} + H_2 \checkmark$	1	 ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) DO NOT ALLOW cycloheptane structure in equation
	(e)		D has more surface (area of) contact OR D is a bigger molecule ✓	2	Both answers need to be comparisons Assume 'it' refers to D ALLOW has more electrons OR longer (carbon) chain OR higher molecular mass IGNORE surface area ALLOW ORA
			D has more van der Waals' forces OR C have fewer van der Waals' forces ✓		ALLOW D has stronger van der Waals' forces / larger VDW / greater VDW OR C has weaker van der Waals' forces OR C has smaller VDW
					ALLOW more VDW forces More intermolecular forces is not sufficient
					DO NOT ALLOW reference to bonds breaking or more bonds present unless it is clear that that the bonds are VDW
	(f)		Same structural formula ✓	2	ALLOW have the same structure / displayed formula / skeletal formula
					Stereoisomers have the same formula or molecular formula is not sufficient
			Different arrangement of groups around a double bond OR different arrangement (of atoms) in space ✓		ALLOW different three dimensional arrangement

Question	er	Marks	Guidance
(g)	C_7H_{16} + 11O ₂ → 7CO ₂ + 8H ₂ O Correct reactants and products ✓ Balancing ✓	2	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple IGNORE state symbols Balancing is dependent on correct formulae
(h)	$C_{16}H_{34} \rightarrow C_8H_{18} + 2C_4H_8 \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple ALLOW structural OR displayed OR skeletal formulae in equation ALLOW but-1-ene IGNORE state symbols
(i) (Group of atoms (in a molecule or compound) that is responsible for the reactions ✓	1	ALLOW the 'part' (of the molecule or compound) that reacts ALLOW the group of atoms that gives the chemical properties ALLOW group of atoms which indicates the homologous series
(ii)	8 ✓	1	
(iii)	has an unpaired electron ✓	1	ALLOW plural i.e. unpaired electrons has a lone OR single OR free electron is not sufficient
	Total	16	

Q	uestion	Answer	Marks	Guidance
3	(a)	Any three from:	3	Assume it refers to Process 1
		Process 1 has a high atom economy OR has 100% atom economy OR a greater atom economy OR makes only the desired product \checkmark		ALLOW process 1 has no waste OR process 1 has no co- products OR process 1 needs less separation OR process 1 has fewer other products OR gives only one product ALLOW ORA if process 2 is specified
		Process 1 has a very efficient conversion of reactants to products OR not much waste of starting material ✓		ALLOW ORA if process 2 is specified high percentage yield is not sufficient DO NOT ALLOW if percentage yield is explicitly linked to more waste (products) e.g. process 1 has a high percentage yield so makes little waste (product) scores 0 marks but process 1 makes no waste (product) and it has a high percentage yield scores 1 mark
		Process 1 uses a lower pressure ✓		ALLOW ORA if process 2 is specified
		Process 1 uses up toxic carbon monoxide ✓		
		Process 1 uses methanol which can be produced from biomass ✓		IGNORE process 2 comes from crude oil a non-renewable source ALLOW process 1 starts from a renewable source if the source is specified e.g. wood, municipal waste or sewage
				IGNORE reference to catalyst and rate of reaction

Q	uesti	on	er	Marks	Guidance
	(b)	(5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Contains C=O bond because of absorption between 1700 and 1740 cm ⁻¹ (from the spectrum) \checkmark		ALLOW contains a carbonyl group because of absorption within range 1640–1750 cm ⁻¹ OR contains an aldehyde, ketone or carboxylic acid because of absorption within range $1640-1750 \text{ cm}^{-1} \checkmark$ Mention of only an aldehyde or a ketone is not sufficient it needs reference to the wavenumber LOOK FOR THIS MARK ON THE SPECTRUM
			does not contain an O–H bond ✓		ALLOW not a carboxylic acid ✓ ALLOW does not have any other characteristic absorbance due to other functional groups
			(So was a) ketone OR aldehyde ✓		ALLOW (so was a) carbonyl compound ALLOW this mark if a structure of an aldehyde or a ketone is given even if the structure has an incorrect number of carbon atoms
			$M_{\rm r} = 86 \checkmark$		
			Correct structure ✓		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
					LOOK FOR AN ALDEHYDE or KETONE with FIVE carbon atoms OR a DIALDEHYDE , DIONE OR an OXOALDEHYDE with FOUR carbon atoms – a comprehensive list of correct structures is shown on page 34 IGNORE incorrect name
					DO NOT ALLOW COH for an aldehyde

Question	er	Marks	Guidance
(b) (i	Correct structure ✓	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) All bonds and all hydrogen atoms must be shown in a
	Name of the structure drawn ✓		displayed formula within this question Name must correspond to the correct structure for two marks ALLOW butanoic acid or 2-methylpropanoic acid if the structure drawn is incorrect There is no ECF in this question
			ALLOW CH ₃ CH ₂ CH ₂ COOH
	butanoic acid OR		
	$H = \begin{bmatrix} H & CH_3 \\ -C & -C \\ -C & -C \\ -H \end{bmatrix} = \begin{bmatrix} CH_3 \\ -C & -C \\ -C & -C \\ -C & -C \\ -C & -C \\ -C & -H \end{bmatrix}$		ALLOW (CH ₃) ₂ CHCOOH
	2-methylpropanoic acid		ALLOW methylpropanoic acid

Question	er	Marks	Guidance
(c)	Use of propan-1-ol ✓	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW from the equation propanol OR C ₃ H ₇ OH is not sufficient
	CH ₃ COOH + C ₃ H ₇ OH → CH ₃ COOCH ₂ CH ₂ CH ₃ + H ₂ O Correct formulae for the ester \checkmark Correctly balanced equation \checkmark		ALLOW molecular formula OR correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW propan-2-ol in the equation
	Add H_2SO_4 OR acid catalyst OR $H^+ \checkmark$		ALLOW conditions mark over the arrow in the equation
	Total	14	

Question	er	Marks	Guidance
4 (a)	$H \rightarrow H \rightarrow$	3	ALLOW structures with missing hydrogen atoms on the carbon atoms that do not take part in the reaction. i.e. all hydrogen atoms must be shown in Q but not in P and R For example for the structures of P and R $\int_{C} \int_{C} \int_{C} \int_{C} \int_{H} \int_{H} \int_{Br} \int_{Br$

Question	er	Marks	Guidance
(b)	Orange OR brown to colourless ✓	1	ALLOW shades of orange OR yellow OR brown DO NOT ALLOW red alone DO NOT ALLOW any response that includes precipitate OR solid, irrespective of colour
(C)	Two or more repeat units \checkmark H_2C CH_2 H_2C CH_2 H_2C CH_2	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Must have at least two repeat units and the free bonds at the end ALLOW free bonds with dotted lines All carbon–carbon bonds in the polymer chain must be shown IGNORE any brackets drawn IGNORE any missing hydrogen atoms on the CH ₂ groups ALLOW skeletal formula

breaking of H–C/ bond \checkmark a carbon atom; other curly arrow must start from H–C/ bond DO NOT ALLOW dipoles on double bond Dipole must be partial charge and not full charge Correct carbonium ion drawn \checkmark Curly arrow from Cl ⁻ to the carbonium ion \checkmark H_2 H	Question	er	Marks	Guidance
Correct carbonium ion drawn \checkmark Curly arrow from CI ⁻ to the carbonium ion \checkmark Curly arrow from CI ⁻ to the carbonium ion \checkmark Curly arrow must come from one lone pair on C. ion OR from minus sign on CI ⁻ ion Lone pair does not need to be shown on CI ⁻ ion ALLOW structures with missing hydrogen atoms of the CH ₂ groups H ₂ H	(d)	breaking of H–CI bond ✓	5	CROSSES ETC Curly arrow must start from the double bond and not a carbon atom; other curly arrow must start from H–C/ bond DO NOT ALLOW dipoles on double bond
in OR from minus sign on $C\Gamma$ ion Lone pair does not need to be shown on $C\Gamma$ ion Lone pair does not need to be shown on $C\Gamma$ ion ALLOW structures with missing hydrogen atoms of the CH ₂ groups				Carbocation needs a full charge and not a partial
Correct product ✓		$H_{2}C + CH_{2} + H_{2}C + C$		Lone pair does not need to be shown on C/ ion ALLOW structures with missing hydrogen atoms on

Question	er	Marks	Guidance
(e)		5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Nucleophilic substitution \checkmark		
	Heterolytic (fission) spelt correctly \checkmark		
	dipole shown on C—C <i>I</i> bond, C^{δ_+} and CI^{δ}		Dipole must be partial charge and not full charge
	curly arrow from HO ⁻ to carbon atom of C—CI bond \checkmark		HO^- curly arrow must come from one lone pair on O of HO^- ion OR from minus sign on HO^- ion
	curly arrow from C—C <i>I</i> bond to the chlorine atom and formation of C <i>I</i> \checkmark		curly arrow must start from C–C <i>I</i> bond and not from C atom
	$H_{2}C \xrightarrow{H_{2}} CH_{2} \xrightarrow{H_{2}} H_{2}C \xrightarrow{H_{2}} CH_{2} + \cdots \xrightarrow{H_{2}} H_{2}C \xrightarrow{H_{2}} CH_{2} + \cdots \xrightarrow{H_{2}} H_{2}C \xrightarrow{H_{2}} CHOH$		ALLOW structures with missing hydrogen atoms on the CH_2 groups
			ALLOW S _N 1 mechanism dipole shown on C—C/ bond, $C^{\delta+}$ and $CI^{\delta-} \checkmark$ curly arrow from C—C/ bond to the CI atom and C/ shown \checkmark curly arrow from HO ⁻ to correct carbonium ion \checkmark
	Total		